Estimating the Impact of Daily Weather on the Temporal Pattern of COVID-19 Outbreak in India

Author:

Gupta Amitesh,Pradhan BiswajeetORCID,Maulud Khairul Nizam Abdul

Abstract

AbstractThe COVID-19 pandemic has spread obstreperously in India. The increase in daily confirmed cases accelerated significantly from ~ 5 additional new cases (ANC)/day during early March up to ~ 249 ANC/day during early June. An abrupt change in this temporal pattern was noticed during mid-April, from which can be inferred a much reduced impact of the nationwide lockdown in India. Daily maximum (TMax), minimum (TMin), mean (TMean) and dew point temperature (TDew), wind speed (WS), relative humidity, and diurnal range in temperature and relative humidity during March 01 to June 04, 2020 over 9 major affected cities are analyzed to look into the impact of daily weather on COVID-19 infections on that day and 7, 10, 12, 14, 16 days before those cases were detected (i.e., on the likely transmission days). Spearman’s correlation exhibits significantly lower association with WS, TMax, TMin, TMean, TDew, but is comparatively better with a lag of 14 days. Support Vector regression successfully estimated the count of confirmed cases (R2 > 0.8) at a lag of 12–16 days, thus reflecting a probable incubation period of 14 ± 02 days in India. Approximately 75% of total cases were registered when TMax, TMean, TMin, TDew, and WS at 12–16 days previously were varying within the range of 33.6–41.3 °C, 29.8–36.5 °C, 24.8–30.4 °C, 18.7–23.6 °C, and 4.2–5.75 m/s, respectively. Thus, we conclude that coronavirus transmission is not well correlated (linearly) with any individual weather parameter; rather, transmission is susceptible to a certain weather pattern. Hence multivariate non-linear approach must be employed instead.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Economic Geology,Geology,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3