Abstract
AbstractSinkholes and landslides occur due to soil collapse in different slope types, often triggered by heavy rainfall, presenting challenges in the semi-arid Golestan province, Iran. This study primarily focuses on the detection of these phenomena. Recent advancements in unmanned aerial vehicle (UAV) image acquisition and the incorporation of deep learning (DL) algorithms have enabled the creation of semi-automated methods for highly detailed soil landform detection across large areas. In this study, we explored the efficacy of six state-of-the-art deep learning segmentation algorithms—DeepLab-v3+, Link-Net, MA-Net, PSP-Net, ResU-Net, and SQ-Net—applied to UAV-derived datasets for mapping landslides and sinkholes. Our most promising outcomes demonstrated the successful mapping of landslides with an F1-Score of 0.95% and sinkholes with an F1-Score of 89% in a challenging environment. ResUNet exhibited an outstanding Precision of 0.97 and Recall of 0.92, culminating in the highest F1-Score of 0.95, indicating the best landslide detection model. MA-Net and SQ-Net resulted in the highest F1-Score for sinkhole detection. Our study underscores the significant impact of DL segmentation algorithm selection on the accuracy of landslide and sinkhole detection tasks. By leveraging DL segmentation algorithms, the accuracy of both landslide and sinkhole detection tasks can be significantly improved, promoting better hazard management and enhancing the safety of the affected areas.
Funder
BOKU
University of Natural Resources and Life Sciences Vienna
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献