Impact of tissue properties on time-dependent alterations in apparent diffusion coefficient: a phantom study using oscillating-gradient spin-echo and pulsed-gradient spin-echo sequences

Author:

Ichikawa Kazushige,Taoka Toshiaki,Ozaki Masanori,Sakai Mayuko,Yamaguchi Hiroshi,Naganawa Shinji

Abstract

Abstract Purpose The purpose of this study was to investigate whether the changes in apparent diffusion coefficients (ADCs) due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. Materials and methods Various n-alkane phantoms and sucrose/collagen phantoms with various collagen densities were set up with and without polyvinyl alcohol (PVA) foam with an average pore diameter of 300 μm. Thus, n-alkanes or sucrose/collagen represented substrate viscosity and the presence of PVA foam represented tissue structure with septum. Diffusion-weighted images with various diffusion times (7.71–60 ms) were acquired using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. The ADCs of the phantoms with and without PVA foam were calculated. Results The ADCs of some of the phantoms without PVA decreased with diffusion times decreased. In the n-alkane phantoms, only C8H18 showed significantly different ADCs depending on the use of PVA foam in the OGSE sequence. On the other hand, sucrose/collagen phantoms showed significant differences according to diffusion time. The ADCs of the phantoms decreased as the molecular size of the n-alkanes or collagen density of the sucrose/collagen phantom increased. Compared to phantoms without PVA foam, the ADC of the phantoms with PVA foam decreased as the diffusion time increased. Conclusion Changes in ADCs due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. These changes in ADCs can be used for tissue characterization in vivo.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference24 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3