Performance evaluation of ChatGPT, GPT-4, and Bard on the official board examination of the Japan Radiology Society

Author:

Toyama YoshitakaORCID,Harigai Ayaka,Abe Mirei,Nagano Mitsutoshi,Kawabata Masahiro,Seki Yasuhiro,Takase Kei

Abstract

Abstract Purpose Herein, we assessed the accuracy of large language models (LLMs) in generating responses to questions in clinical radiology practice. We compared the performance of ChatGPT, GPT-4, and Google Bard using questions from the Japan Radiology Board Examination (JRBE). Materials and methods In total, 103 questions from the JRBE 2022 were used with permission from the Japan Radiological Society. These questions were categorized by pattern, required level of thinking, and topic. McNemar’s test was used to compare the proportion of correct responses between the LLMs. Fisher’s exact test was used to assess the performance of GPT-4 for each topic category. Results ChatGPT, GPT-4, and Google Bard correctly answered 40.8% (42 of 103), 65.0% (67 of 103), and 38.8% (40 of 103) of the questions, respectively. GPT-4 significantly outperformed ChatGPT by 24.2% (p < 0.001) and Google Bard by 26.2% (p < 0.001). In the categorical analysis by level of thinking, GPT-4 correctly answered 79.7% of the lower-order questions, which was significantly higher than ChatGPT or Google Bard (p < 0.001). The categorical analysis by question pattern revealed GPT-4’s superiority over ChatGPT (67.4% vs. 46.5%, p = 0.004) and Google Bard (39.5%, p < 0.001) in the single-answer questions. The categorical analysis by topic revealed that GPT-4 outperformed ChatGPT (40%, p = 0.013) and Google Bard (26.7%, p = 0.004). No significant differences were observed between the LLMs in the categories not mentioned above. The performance of GPT-4 was significantly better in nuclear medicine (93.3%) than in diagnostic radiology (55.8%; p < 0.001). GPT-4 also performed better on lower-order questions than on higher-order questions (79.7% vs. 45.5%, p < 0.001). Conclusion ChatGPTplus based on GPT-4 scored 65% when answering Japanese questions from the JRBE, outperforming ChatGPT and Google Bard. This highlights the potential of using LLMs to address advanced clinical questions in the field of radiology in Japan.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference24 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3