GPT-4 Turbo with Vision fails to outperform text-only GPT-4 Turbo in the Japan Diagnostic Radiology Board Examination

Author:

Hirano YuichiroORCID,Hanaoka ShouheiORCID,Nakao TakahiroORCID,Miki SoichiroORCID,Kikuchi TomohiroORCID,Nakamura YutaORCID,Nomura YukihiroORCID,Yoshikawa TakeharuORCID,Abe OsamuORCID

Abstract

Abstract Purpose To assess the performance of GPT-4 Turbo with Vision (GPT-4TV), OpenAI’s latest multimodal large language model, by comparing its ability to process both text and image inputs with that of the text-only GPT-4 Turbo (GPT-4 T) in the context of the Japan Diagnostic Radiology Board Examination (JDRBE). Materials and methods The dataset comprised questions from JDRBE 2021 and 2023. A total of six board-certified diagnostic radiologists discussed the questions and provided ground-truth answers by consulting relevant literature as necessary. The following questions were excluded: those lacking associated images, those with no unanimous agreement on answers, and those including images rejected by the OpenAI application programming interface. The inputs for GPT-4TV included both text and images, whereas those for GPT-4 T were entirely text. Both models were deployed on the dataset, and their performance was compared using McNemar’s exact test. The radiological credibility of the responses was assessed by two diagnostic radiologists through the assignment of legitimacy scores on a five-point Likert scale. These scores were subsequently used to compare model performance using Wilcoxon's signed-rank test. Results The dataset comprised 139 questions. GPT-4TV correctly answered 62 questions (45%), whereas GPT-4 T correctly answered 57 questions (41%). A statistical analysis found no significant performance difference between the two models (P = 0.44). The GPT-4TV responses received significantly lower legitimacy scores from both radiologists than the GPT-4 T responses. Conclusion No significant enhancement in accuracy was observed when using GPT-4TV with image input compared with that of using text-only GPT-4 T for JDRBE questions.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. OpenAI. Introducing ChatGPT [Internet]. [cited 2023 Nov 14]. Available from: https://openai.com/blog/chatgpt

2. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot Learners [Internet]. arXiv [cs.CL]. 2020. Available from: http://arxiv.org/abs/2005.14165

3. OpenAI. GPT-4 Technical Report [Internet]. arXiv [cs.CL]. 2023. Available from: http://arxiv.org/abs/2303.08774

4. Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLOS Digit Health. 2023;2(2):e0000198.

5. Tanaka Y, Nakata T, Aiga K, Etani T, Muramatsu R, Katagiri S, et al. Performance of generative pretrained transformer on the National Medical Licensing Examination in Japan. bioRxiv. 2023. https://doi.org/10.1101/2023.04.17.23288603.abstract.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3