Performance of artificial intelligence-based software for the automatic detection of lung lesions on chest radiographs of patients with suspected lung cancer

Author:

Takamatsu Atsushi,Ueno Midori,Yoshida KotaroORCID,Kobayashi Takeshi,Kobayashi Satoshi,Gabata Toshifumi

Abstract

Abstract Purpose This study aimed to evaluate the performance of the commercially available artificial intelligence-based software CXR-AID for the automatic detection of pulmonary nodules on the chest radiographs of patients suspected of having lung cancer. Materials and methods This retrospective study included 399 patients with clinically suspected lung cancer who underwent CT and chest radiography within 1 month between June 2020 and May 2022. The candidate areas on chest radiographs identified by CXR-AID were categorized into target (properly detected areas) and non-target (improperly detected areas) areas. The non-target areas were further divided into non-target normal areas (false positives for normal structures) and non-target abnormal areas. The visibility score, characteristics and location of the nodules, presence of overlapping structures, and background lung score and presence of pulmonary disease were manually evaluated and compared between the nodules detected or undetected by CXR-AID. The probability indices calculated by CXR-AID were compared between the target and non-target areas. Results Among the 450 nodules detected in 399 patients, 331 nodules detected in 313 patients were visible on chest radiographs during manual evaluation. CXR-AID detected 264 of these 331 nodules with a sensitivity of 0.80. The detection sensitivity increased significantly with the visibility score. No significant correlation was observed between the background lung score and sensitivity. The non-target area per image was 0.85, and the probability index of the non-target area was lower than that of the target area. The non-target normal area per image was 0.24. Larger and more solid nodules exhibited higher sensitivities, while nodules with overlapping structures demonstrated lower detection sensitivities. Conclusion The nodule detection sensitivity of CXR-AID on chest radiographs was 0.80, and the non-target and non-target normal areas per image were 0.85 and 0.24, respectively. Larger, solid nodules without overlapping structures were detected more readily by CXR-AID.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3