Abstract
Abstract
Purpose
This study aimed to evaluate the performance of the commercially available artificial intelligence-based software CXR-AID for the automatic detection of pulmonary nodules on the chest radiographs of patients suspected of having lung cancer.
Materials and methods
This retrospective study included 399 patients with clinically suspected lung cancer who underwent CT and chest radiography within 1 month between June 2020 and May 2022. The candidate areas on chest radiographs identified by CXR-AID were categorized into target (properly detected areas) and non-target (improperly detected areas) areas. The non-target areas were further divided into non-target normal areas (false positives for normal structures) and non-target abnormal areas. The visibility score, characteristics and location of the nodules, presence of overlapping structures, and background lung score and presence of pulmonary disease were manually evaluated and compared between the nodules detected or undetected by CXR-AID. The probability indices calculated by CXR-AID were compared between the target and non-target areas.
Results
Among the 450 nodules detected in 399 patients, 331 nodules detected in 313 patients were visible on chest radiographs during manual evaluation. CXR-AID detected 264 of these 331 nodules with a sensitivity of 0.80. The detection sensitivity increased significantly with the visibility score. No significant correlation was observed between the background lung score and sensitivity. The non-target area per image was 0.85, and the probability index of the non-target area was lower than that of the target area. The non-target normal area per image was 0.24. Larger and more solid nodules exhibited higher sensitivities, while nodules with overlapping structures demonstrated lower detection sensitivities.
Conclusion
The nodule detection sensitivity of CXR-AID on chest radiographs was 0.80, and the non-target and non-target normal areas per image were 0.85 and 0.24, respectively. Larger, solid nodules without overlapping structures were detected more readily by CXR-AID.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献