Differentiation of silent corticotroph pituitary neuroendocrine tumors (PitNETs) from non-functioning PitNETs using kinetic analysis of dynamic MRI

Author:

Amano TaishiORCID,Masumoto Tomohiko,Watanabe Daisuke,Hoshiai Sodai,Mori Kensaku,Sakamoto Noriaki,Kino Hiroyoshi,Akutsu Hiroyoshi,Nakajima Takahito

Abstract

Abstract Purpose Silent corticotroph pituitary adenomas (SCAs)/pituitary neuroendocrine tumors (PitNETs) are common non-functioning pituitary adenomas (NFAs)/PitNETs with a clinically aggressive course. This study aimed to investigate the ability of time-intensity analysis of dynamic magnetic resonance imaging (MRI) for distinguishing adrenocorticotropic hormone (ACTH)-positive SCAs and ACTH-negative SCAs from other NFAs. Materials and methods We retrospectively evaluated the dynamic MRI findings of patients with NFAs. The initial slope of the kinetic curve (slopeini) obtained by dynamic MRI for each tumor was analyzed using a modified empirical mathematical model. The maximum slope of the kinetic curve (slopemax) was obtained by geometric calculation. Results A total of 106 patients with NFAs (11 ACTH-positive SCAs, 5 ACTH-negative SCAs, and 90 other NFAs) were evaluated. The kinetic curves of ACTH-positive SCAs had significantly lesser slopeini and slopemax compared with ACTH-negative SCAs (P = 0.040 and P = 0.001, respectively) and other NFAs (P = 0.018 and P = 0.035, respectively). Conversely, the slopeini and slopemax were significantly greater in ACTH-negative SCAs than in NFAs other than ACTH-negative SCAs (P = 0.033 and P = 0.044, respectively). In receiver operating characteristic analysis of ACTH-positive SCAs and other NFAs, the area under the curve (AUC) values for slopeini and slopemax were 0.762 and 0748, respectively. In predicting ACTH-negative SCAs, the AUC values for slopeini and slopemax were 0.784 and 0.846, respectively. Conclusions Dynamic MRI can distinguish ACTH-positive SCAs and ACTH-negative SCAs from other NFAs.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3