Applying deep learning-based ensemble model to [18F]-FDG-PET-radiomic features for differentiating benign from malignant parotid gland diseases

Author:

Nakajo Masatoyo,Hirahara Daisuke,Jinguji Megumi,Hirahara Mitsuho,Tani Atsushi,Nagano Hiromi,Takumi Koji,Kamimura Kiyohisa,Kanzaki Fumiko,Yamashita Masaru,Yoshiura Takashi

Abstract

Abstract Objectives To develop and identify machine learning (ML) models using pretreatment 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG)-positron emission tomography (PET)-based radiomic features to differentiate benign from malignant parotid gland diseases (PGDs). Materials and methods This retrospective study included 62 patients with 63 PGDs who underwent pretreatment [18F]-FDG-PET/computed tomography (CT). The lesions were assigned to the training (n = 44) and testing (n = 19) cohorts. In total, 49 [18F]-FDG-PET-based radiomic features were utilized to differentiate benign from malignant PGDs using five different conventional ML algorithmic models (random forest, neural network, k-nearest neighbors, logistic regression, and support vector machine) and the deep learning (DL)-based ensemble ML model. In the training cohort, each conventional ML model was constructed using the five most important features selected by the recursive feature elimination method with the tenfold cross-validation and synthetic minority oversampling technique. The DL-based ensemble ML model was constructed using the five most important features of the bagging and multilayer stacking methods. The area under the receiver operating characteristic curves (AUCs) and accuracies were used to compare predictive performances. Results In total, 24 benign and 39 malignant PGDs were identified. Metabolic tumor volume and four GLSZM features (GLSZM_ZSE, GLSZM_SZE, GLSZM_GLNU, and GLSZM_ZSNU) were the five most important radiomic features. All five features except GLSZM_SZE were significantly higher in malignant PGDs than in benign ones (each p < 0.05). The DL-based ensemble ML model had the best performing classifier in the training and testing cohorts (AUC = 1.000, accuracy = 1.000 vs AUC = 0.976, accuracy = 0.947). Conclusions The DL-based ensemble ML model using [18F]-FDG-PET-based radiomic features can be useful for differentiating benign from malignant PGDs. Second abstract The DL-based ensemble ML model using [18F]-FDG-PET-based radiomic features can overcome the previously reported limitation of [18F]-FDG-PET/CT scan for differentiating benign from malignant PGDs. The DL-based ensemble ML approach using [18F]-FDG-PET-based radiomic features can provide useful information for managing PGD.

Funder

Kagoshima University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3