Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning

Author:

Nakao TakahiroORCID,Hanaoka Shouhei,Nomura Yukihiro,Hayashi Naoto,Abe Osamu

Abstract

Abstract Purpose To develop an anomaly detection system in PET/CT with the tracer 18F-fluorodeoxyglucose (FDG) that requires only normal PET/CT images for training and can detect abnormal FDG uptake at any location in the chest region. Materials and methods We trained our model based on a Bayesian deep learning framework using 1878 PET/CT scans with no abnormal findings. Our model learns the distribution of standard uptake values in these normal training images and detects out-of-normal uptake regions. We evaluated this model using 34 scans showing focal abnormal FDG uptake in the chest region. This evaluation dataset includes 28 pulmonary and 17 extrapulmonary abnormal FDG uptake foci. We performed per-voxel and per-slice receiver operating characteristic (ROC) analyses and per-lesion free-response receiver operating characteristic analysis. Results Our model showed an area under the ROC curve of 0.992 on discriminating abnormal voxels and 0.852 on abnormal slices. Our model detected 41 of 45 (91.1%) of the abnormal FDG uptake foci with 12.8 false positives per scan (FPs/scan), which include 26 of 28 pulmonary and 15 of 17 extrapulmonary abnormalities. The sensitivity at 3.0 FPs/scan was 82.2% (37/45). Conclusion Our model trained only with normal PET/CT images successfully detected both pulmonary and extrapulmonary abnormal FDG uptake in the chest region.

Funder

Japan Society for the Promotion of Science London

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3