Abstract
Abstract
Purpose
The aim of this study was to assess the impact of the deep learning reconstruction (DLR) with single-energy metal artifact reduction (SEMAR) (DLR-S) technique in pelvic helical computed tomography (CT) images for patients with metal hip prostheses and compare it with DLR and hybrid iterative reconstruction (IR) with SEMAR (IR-S).
Materials and methods
This retrospective study included 26 patients (mean age 68.6 ± 16.6 years, with 9 males and 17 females) with metal hip prostheses who underwent a CT examination including the pelvis. Axial pelvic CT images were reconstructed using DLR-S, DLR, and IR-S. In one-by-one qualitative analyses, two radiologists evaluated the degree of metal artifacts, noise, and pelvic structure depiction. In side-by-side qualitative analyses (DLR-S vs. IR-S), the two radiologists evaluated metal artifacts and overall quality. By placing regions of interest on the bladder and psoas muscle, the standard deviations of their CT attenuation were recorded, and the artifact index was calculated based on them. Results were compared between DLR-S vs. DLR and DLR vs. IR-S using the Wilcoxon signed-rank test.
Results
In one-by-one qualitative analyses, metal artifacts and structure depiction in DLR-S were significantly better than those in DLR; however, between DLR-S and IR-S, significant differences were noted only for reader 1. Image noise in DLR-S was rated as significantly reduced compared with that in IR-S by both readers. In side-by-side analyses, both readers rated that the DLR-S images are significantly better than IR-S images regarding overall image quality and metal artifacts. The median (interquartile range) of the artifact index for DLR-S was 10.1 (4.4–16.0) and was significantly better than those for DLR (23.1, 6.5–36.1) and IR-S (11.4, 7.8–17.9).
Conclusion
DLR-S provided better pelvic CT images in patients with metal hip prostheses than IR-S and DLR.
Funder
Japan Society for the Promotion of Science
The University of Tokyo
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference15 articles.
1. Ferguson RJ, Palmer AJ, Taylor A, Porter ML, Malchau H, Glyn-Jones S. Hip replacement. Lancet. 2018;392:1662–71.
2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–5.
3. Cheraya G, Sharma S, Chhabra A. Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction. Skeletal Radiol. 2022;51:1521–34.
4. Sonoda A, Nitta N, Ushio N, Nagatani Y, Okumura N, Otani H, et al. Evaluation of the quality of CT images acquired with the single energy metal artifact reduction (SEMAR) algorithm in patients with hip and dental prostheses and aneurysm embolization coils. Jpn J Radiol. 2015;33:710–6.
5. Kawahara D, Ozawa S, Yokomachi K, Higaki T, Shiinoki T, Saito A, et al. Metal artifact reduction techniques for single energy CT and dual-energy CT with various metal materials. BJR Open. 2019;1:20180045.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献