Abstract
Abstract
Purpose
To classify COVID-19, COVID-19-like and non-COVID-19 interstitial pneumonia using lung CT radiomic features.
Material and Methods
CT data of 115 patients with respiratory symptoms suspected for COVID-19 disease were retrospectively analyzed. Based on the results of nasopharyngeal swab, patients were divided into two main groups, COVID-19 positive (C +) and COVID-19 negative (C−), respectively. C− patients, however, presented with interstitial lung involvement. A subgroup of C−, COVID-19-like (CL), were considered as highly suggestive of COVID pneumonia at CT. Radiomic features were extracted from the whole lungs. A dual machine learning (ML) model approach was used. The first one excluded CL patients from the training set, eventually included on the test set. The second model included the CL patients also in the training set.
Results
The first model classified C + and C− pneumonias with AUC of 0.83. CL median response (0.80) was more similar to C + (0.92) compared to C− (0.17). Radiomic footprints of CL were similar to the C + ones (possibly false negative swab test). The second model, however, merging C + with CL patients in the training set, showed a slight decrease in classification performance (AUC = 0.81).
Conclusion
Whole lung ML models based on radiomics can classify C + and C− interstitial pneumonia. This may help in the correct management of patients with clinical and radiological stigmata of COVID-19, however presenting with a negative swab test. CL pneumonia was similar to C + pneumonia, albeit with slightly different radiomic footprints.
Funder
Università degli Studi di Verona
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,General Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献