Heart rate sensitivity of virtual non-contrast calcium scores derived from photon counting detector CT data: a phantom study

Author:

Risch Franka,Schwarz Florian,Kroencke ThomasORCID,Decker Josua A.

Abstract

Abstract Purpose To assess the reliability of virtual non-contrast (VNC) derived coronary artery calcium quantities in relation to heart rate and the VNC algorithm used compared to reference true non-contrast (TNC), considering several clinically established acquisition modes. Material and methods An ad hoc built coronary phantom containing four calcified lesions and an iodinated lumen was scanned using three cardiac acquisition modes three times within an anthropomorphic cardiac motion phantom simulating different heart rates (0, 60, 80, 100 bpm) and reconstructed with a conventional (VNCconv) and a calcium-sensitive (VNCpc) VNC algorithm. TNC reference was scanned at 0 bpm with non-iodinated lumen. Calcium scores were assessed in terms of number of lesions detected, Agatston and volume scores and global noise was measured. Paired t-test and Wilcoxon test were performed to test measurements for significant difference. Results For both VNC algorithms used, calcium levels or noise were not significantly affected by heart rate. Measurements on VNCpc reconstructions best reproduced TNC results, but with increased variability (Agatston scores at 0 bpm for TNC, VNCconv, and VNCpc were 47.1 ± 1.1, 6.7 ± 2.8 (p < 0.001), and 45.3 ± 7.6 (p > 0.05), respectively). VNC reconstructions showed lower noise levels compared to TNC, especially for VNCpc (noiseheart on TNC, VNCconv and VNCpc at 0 bpm was 5.0 ± 0.4, 4.5 ± 0.2, 4.2 ± 0.2). Conclusion No significant heart rate dependence of VNC-based calcium scores was observed in an intra-reconstruction comparison. VNCpc reproduces TNC scores better than VNCconv without significant differences and decreased noise, however, with an increasing average deviation with rising heart rates. VNC-based CACS should be used with caution as the measures show higher variability compared to reference TNC and therefore hold the potential of incorrect risk categorization.

Funder

Universität Augsburg

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3