Abstract
Abstract
Purpose
To evaluate a deep learning-based pipeline using a Dense-UNet architecture for the assessment of acute intracranial hemorrhage (ICH) on non-contrast computed tomography (NCCT) head scans after traumatic brain injury (TBI).
Materials and methods
This retrospective study was conducted using a prototype algorithm that evaluated 502 NCCT head scans with ICH in context of TBI.
Four board-certified radiologists evaluated in consensus the CT scans to establish the standard of reference for hemorrhage presence and type of ICH. Consequently, all CT scans were independently analyzed by the algorithm and a board-certified radiologist to assess the presence and type of ICH. Additionally, the time to diagnosis was measured for both methods.
Results
A total of 405/502 patients presented ICH classified in the following types: intraparenchymal (n = 172); intraventricular (n = 26); subarachnoid (n = 163); subdural (n = 178); and epidural (n = 15). The algorithm showed high diagnostic accuracy (91.24%) for the assessment of ICH with a sensitivity of 90.37% and specificity of 94.85%. To distinguish the different ICH types, the algorithm had a sensitivity of 93.47% and a specificity of 99.79%, with an accuracy of 98.54%. To detect midline shift, the algorithm had a sensitivity of 100%. In terms of processing time, the algorithm was significantly faster compared to the radiologist’s time to first diagnosis (15.37 ± 1.85 vs 277 ± 14 s, p < 0.001).
Conclusion
A novel deep learning algorithm can provide high diagnostic accuracy for the identification and classification of ICH from unenhanced CT scans, combined with short processing times. This has the potential to assist and improve radiologists’ ICH assessment in NCCT scans, especially in emergency scenarios, when time efficiency is needed.
Publisher
Springer Science and Business Media LLC