1. Azimi, H., Chang, S., Gold, J., et al.: Improving accuracy and explainability of online handwriting recognition. arXiv preprint arXiv:2209.09102 (2022)
2. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR. arXiv:1803.01271 (2018)
3. Bu, Y., Xie, L., Yin, Y., et al.: Handwriting-assistant: Reconstructing continuous strokes with millimeter-level accuracy via attachable inertial sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (2021)
4. Chen, Z., Yang, D., Liang, J., et al.: Complex handwriting trajectory recovery: evaluation metrics and algorithm. In Proceedings of the asian conference on computer vision, pp 1060–1076 (2022)
5. Dai, R., Xu, S., Gu, Q., et al.: Hybrid spatio-temporal graph convolutional network: Improving traffic prediction with navigation data. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (2020)