Suppression of Cephalosporium maydis by the resistance inducer beta-sitosterol

Author:

Elshahawy Ibrahim E.ORCID,Abd El-Wahed Mohamed S.

Abstract

AbstractLate wilt, a vascular disease caused by the fungus of Cephalosporium maydis, is considered one of Egypt’s most severe maize threats. The purpose of this study was to investigate the suppressive effect of the resistance inducer beta-sitosterol on C. maydis, as well as its involvement in reducing the incidence of late wilt infection under greenhouse and field conditions. In in vitro studies on potato dextrose yeast extract agar (PDYA) and/or potato dextrose yeast extract broth (PDYB) with doses of 50, 100, 150, 200, and 250 ppm, beta-sitosterol significantly reduced colony diameter and spore germination of C. maydis. The efficiency of beta-sitosterol increased with concentration, with 250 ppm being the most efficient, reducing colony development by 100% and spore germination by 77.3%. Experiments were conducted in greenhouse and field trials using the split-plot design with three beta-sitosterol 250 ppm application methods (maize grain dipping, maize foliar spraying, and maize grain dipping with foliar spraying) and two maize cultivars (a land race and the cultivar fine seed 1005). In both trials, the combination treatment of maize grain dipping and foliar spraying with beta-sitosterol 250 ppm was most effective. Under greenhouse conditions, beta-sitosterol treatments significantly improved the growth parameters (plant height, plant fresh weight, and plant dry weight) of the two maize cultivars. Under similar conditions, beta-sitosterol significantly increased the activity of protective enzymes (peroxidase, polyphenoloxidase, and chitinase) and the levels of chlorophyll, total phenols, and flavonoids in the two maize cultivars. When compared to the untreated control, beta-sitosterol application reduced the incidence of late wilt disease under greenhouse and field conditions. The ear yield of the two maize cultivars was significantly increased in plots treated with beta-sitosterol 250 ppm in a field trial. The findings showed that beta-sitosterol inhibited C. maydis growth in vitro and improved maize plant resistance to late wilt infection in vivo. As a result, this plant resistance inducer could be used to improve the resistance of maize cultivars to late wilt disease.

Funder

National Research Center

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3