Physiological and morphological response of tomato plants to nano-chitosan used against bio-stress induced by root-knot nematode (Meloidogyne incognita) and Tobacco mosaic tobamovirus (TMV)

Author:

Khalil Mohamed SalahORCID,Abd El-Aziz Mahmoud HamdyORCID,Selim Rasha El-SayedORCID

Abstract

AbstractRoot-knot nematodes (Meloidogynespp.) have been reported to be responsible for large economic losses of agricultural crops due to their wide host range and variety of suitable climates. The control measures of these parasitic nematodes depend upon synthetic nematicides and a small number bio-based products. Chemical nematicides are eliciting adverse effects on the environment and human health. In the present study, an alternative tool, nano-chitosan was tested for the control the root-knot nematodes,Meloidogyne incognita, andTobacco mosaic tobamovirus(TMV) in greenhouse-cultivated tomato. The effect of nano-chitosan on morphological (weight and length of shoot and root systems) and biochemical responses (Polyphenol oxidase, Peroxides, Total soluble phenol and Total protein) was assessed. The obtained results indicated that densities ofMeloidogyne incognitaalone or in the presence of TMV were decreased by nano-chitosan at a range of 45.89 to 66.61%, while root gall desntiy was reduced between 10.63 and 67.87%. Moreover, the density of TMV on tomato leaves singly or in the presence ofM. incognitawas suppressed at range of 10.26 to 65.00% after 20 days of infection, and reached up to 58.00% after 40 days of infection. However, soil application of nano-chitosan pre infection reduced TMV density only by 5.48%. Morphogenesis of tomato plants such as shoot and root systems were significantly improved. The impacts of nano-Chitosan applications on total soluble phenol, total protein, polyphenol oxidase and peroxides after 20 and 40 days of infections varied.

Funder

Agricultural Research Center

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3