A continuous variable Born machine

Author:

Čepaitė IevaORCID,Coyle Brian,Kashefi Elham

Abstract

AbstractGenerative modelling has become a promising use case for near-term quantum computers. Due to the fundamentally probabilistic nature of quantum mechanics, quantum computers naturally model and learn probability distributions, perhaps more efficiently than can be achieved classically. The quantum circuit Born machine is an example of such a model, easily implemented on near-term quantum computers. However, the Born machine was originally defined to naturally represent discrete distributions. Since probability distributions of a continuous nature are commonplace in the world, it is essential to have a model which can efficiently represent them. Some proposals have been made in the literature to supplement the discrete Born machine with extra features to more easily learn continuous distributions; however, all invariably increase the resources required. In this work, we discuss the continuous variable Born machine, built on the alternative architecture of continuous variable quantum computing, which is much more suitable for modelling such distributions in a resource-minimal way. We provide numerical results indicating the model’s ability to learn both quantum and classical continuous distributions, including in the presence of noise.

Funder

Engineering and Physical Sciences Research Council

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3