Quantum algorithms for SVD-based data representation and analysis

Author:

Bellante ArmandoORCID,Luongo AlessandroORCID,Zanero StefanoORCID

Abstract

AbstractThis paper narrows the gap between previous literature on quantum linear algebra and practical data analysis on a quantum computer, formalizing quantum procedures that speed-up the solution of eigenproblems for data representations in machine learning. The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix’s size, for principal component analysis, correspondence analysis, and latent semantic analysis. We provide a theoretical analysis of the run-time and prove tight bounds on the randomized algorithms’ error. We run experiments on multiple datasets, simulating PCA’s dimensionality reduction for image classification with the novel routines. The results show that the run-time parameters that do not depend on the input’s size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.

Funder

National Research Foundation Singapore

Horizon 2020 Framework Programme

Association Nationale de la Recherche et de la Technologie

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum algorithm for computing distances between subspaces;Physics Letters A;2024-08

2. Novel Objective Function and Expectation Value Estimation Method for the Variational Quantum Singular Value Decomposition Algorithm;2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS);2024-01-03

3. Quantum Algorithms;Contributions to Economics;2024

4. Quantum Eigenfaces: Linear Feature Mapping and Nearest Neighbor Classification with Outlier Detection;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Introducing QRogue: Teaching Quantum Computing Using a Rogue-like Game Concept;Proceedings of the 18th International Conference on the Foundations of Digital Games;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3