Solving the vehicle routing problem via quantum support vector machines

Author:

Mohanty Nishikanta,Behera Bikash K.,Ferrie Christopher

Abstract

AbstractThe vehicle routing problem (VRP) is an example of a combinatorial optimization problem that has attracted academic attention due to its potential use in various contexts. VRP aims to arrange vehicle deliveries to several sites in the most efficient and economical manner possible. Quantum machine learning offers a new way to obtain solutions by harnessing the natural speedups of quantum effects, although many solutions and methodologies are modified using classical tools to provide excellent approximations of the VRP. In this paper, we employ 6 and 12 qubit circuits, respectively, to build and evaluate a hybrid quantum machine learning approach for solving VRP of 3- and 4-city scenarios. The approach employs quantum support vector machines (QSVMs) trained using a variational quantum eigensolver on a static or dynamic ansatz. Different encoding strategies are used in the experiment to transform the VRP formulation into a QSVM and solve it. Multiple optimizers from the IBM Qiskit framework are also evaluated and compared

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A scientometric analysis of quantum driven innovations in intelligent transportation systems;Engineering Applications of Artificial Intelligence;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3