Quantum state reconstruction in a noisy environment via deep learning

Author:

Morgillo Angela Rosy,Mangini Stefano,Piastra Marco,Macchiavello Chiara

Abstract

AbstractQuantum noise is currently limiting efficient quantum information processing and computation, impacting on the fidelity and reliability of quantum states. In this work, we consider the tasks of reconstructing and classifying quantum states corrupted by the action of an unknown noisy channel using classical feed-forward neural networks. By framing reconstruction as a regression problem, we show how such an approach can be used to recover with fidelities exceeding 99% the noiseless density matrices of quantum states of up to three qubits undergoing noisy evolution, and we test its performance with both single-qubit (bit-flip, phase-flip, depolarizing, and amplitude damping) and two-qubit quantum channels (correlated amplitude damping). Furthermore, a critical aspect of our investigation involves also a comprehensive comparison between mean squared error and infidelity as loss functions. Our findings reveal that these two metrics yield comparable results in the context of state reconstruction. Moreover, we also consider the task of distinguishing between different quantum noisy channels, and show how a neural network-based classifier is able to solve such a classification problem with perfect accuracy.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Abadi M et al (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. https://www.tensorflow.org/

2. Ahmed S, Muñoz CS, Nori F, Kockum AF (2021) Classification and reconstruction of optical quantum states with deep neural networks. Physical Review Research. 3(3):033278. https://doi.org/10.1103/PhysRevResearch.3.033278

3. Avron J, Kenneth O (2020) An elementary introduction to the geometry of quantum states with pictures. Rev Math Phys 32(02):2030001. https://doi.org/10.1142/S0129055X20300010

4. Bravyi S, Sheldon S, Kandala A, Mckay DC, Gambetta JM (2021) Mitigating measurement errors in multiqubit experiments. Phys Rev A 103(4):042605. https://doi.org/10.1103/PhysRevA.103.042605

5. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds.) Advances in Neural Information Processing Systems, vol. 33. Curran Associates, Inc., pp. 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3