On the interpretability of quantum neural networks

Author:

Pira Lirandë,Ferrie Chris

Abstract

AbstractInterpretability of artificial intelligence (AI) methods, particularly deep neural networks, is of great interest. This heightened focus stems from the widespread use of AI-backed systems. These systems, often relying on intricate neural architectures, can exhibit behavior that is challenging to explain and comprehend. The interpretability of such models is a crucial component of building trusted systems. Many methods exist to approach this problem, but they do not apply straightforwardly to the quantum setting. Here, we explore the interpretability of quantum neural networks using local model-agnostic interpretability measures commonly utilized for classical neural networks. Following this analysis, we generalize a classical technique called LIME, introducing Q-LIME, which produces explanations of quantum neural networks. A feature of our explanations is the delineation of the region in which data samples have been given a random label, likely subjects of inherently random quantum measurements. We view this as a step toward understanding how to build responsible and accountable quantum AI models.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3