Decohering tensor network quantum machine learning models

Author:

Liao Haoran,Convy Ian,Yang Zhibo,Whaley K. Birgitta

Abstract

AbstractTensor network quantum machine learning (QML) models are promising applications on near-term quantum hardware. While decoherence of qubits is expected to decrease the performance of QML models, it is unclear to what extent the diminished performance can be compensated for by adding ancillas to the models and accordingly increasing the virtual bond dimension of the models. We investigate here the competition between decoherence and adding ancillas on the classification performance of two models, with an analysis of the decoherence effect from the perspective of regression. We present numerical evidence that the fully decohered unitary tree tensor network (TTN) with two ancillas performs at least as well as the non-decohered unitary TTN, suggesting that it is beneficial to add at least two ancillas to the unitary TTN regardless of the amount of decoherence may be consequently introduced.

Funder

U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Reference37 articles.

1. Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Sci Technol 4:043001. ISSN 2058-9565, https://doi.org/10.1088%2F2058-9565%2Fab4eb5

2. Biamonte J, Bergholm V (2017) Tensor networks in a nutshell. arXiv:1708.00006

3. Bridgeman JC, Chubb CT (2017) Hand-waving and interpretive dance: an introductory course on tensor networks. J Phys A: Math Theor 50. ISSN 17518121, https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3/meta

4. Clanuwat T, Bober-Irizar M, Kitamoto A, Lamb A, Yamamoto K, Ha D (2018) Deep learning for classical Japanese literature. arXiv:1812.01718

5. Cohen N, Shashua A (2016) Convolutional rectifier networks as generalized tensor decompositions. In: Proceedings of ICML. http://proceedings.mlr.press/v48/cohenb16.pdf, pp 955–963

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpreting variational quantum models with active paths in parameterized quantum circuits;Machine Learning: Science and Technology;2024-06-01

2. Tensor networks for quantum machine learning;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-07

3. Amplitude transformed quantum convolutional neural network;Applied Intelligence;2023-04-25

4. Quantum Machine Learning for Next-G Wireless Communications: Fundamentals and the Path Ahead;IEEE Open Journal of the Communications Society;2023

5. Tensor Networks for Interpretable and Efficient Quantum-Inspired Machine Learning;Intelligent Computing;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3