Global Existence and Blow-up Solutions for a Parabolic Equation with Critical Nonlocal Interactions

Author:

Zhang Jian,Rădulescu Vicentiu D.,Yang Minbo,Zhou Jiazheng

Abstract

AbstractIn this paper, we study the initial boundary value problem for the nonlocal parabolic equation with the Hardy–Littlewood–Sobolev critical exponent on a bounded domain. We are concerned with the long time behaviors of solutions when the initial energy is low, critical or high. More precisely, by using the modified potential well method, we obtain global existence and blow-up of solutions when the initial energy is low or critical, and it is proved that the global solutions are classical. Moreover, we obtain an upper bound of blow-up time for $$J_{\mu }(u_{0})<0$$ J μ ( u 0 ) < 0 and decay rate of $$H^{1}_{0}$$ H 0 1 and $$L^{2}$$ L 2 -norm of the global solutions. When the initial energy is high, we derive some sufficient conditions for global existence and blow-up of solutions. In addition, we are going to consider the asymptotic behavior of global solutions, which is similar to the Palais-Smale (PS for short) sequence of stationary equation.

Publisher

Springer Science and Business Media LLC

Subject

Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3