Slow Grow-up in a Quasilinear Keller–Segel System

Author:

Winkler Michael

Abstract

AbstractIn a ball $$\Omega =B_R(0)\subset \mathbb {R}^n$$ Ω = B R ( 0 ) R n , $$n\ge 2$$ n 2 , the chemotaxis system $$\begin{aligned} \left\{ \begin{array}{l}u_t = \nabla \cdot \big ( D(u) \nabla u \big ) - \nabla \cdot \big ( uS(u)\nabla v\big ), \\ 0 = \Delta v - \mu + u, \qquad \mu =\frac{1}{|\Omega |} \int _\Omega u, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$ u t = · ( D ( u ) u ) - · ( u S ( u ) v ) , 0 = Δ v - μ + u , μ = 1 | Ω | Ω u , ( ) is considered under no-flux boundary conditions, with a focus on nonlinearities $$S\in C^2([0,\infty ))$$ S C 2 ( [ 0 , ) ) which exhibit super-algebraically fast decay in the sense that with some $$K_S>0, \beta \in [0,1)$$ K S > 0 , β [ 0 , 1 ) and $$\xi _0>0$$ ξ 0 > 0 , $$\begin{aligned} S(\xi )>0 \quad \text{ and } \quad S'(\xi ) \le -K_S\xi ^{-\beta } S(\xi ) \qquad \text{ for } \text{ all } \xi \ge \xi _0. \end{aligned}$$ S ( ξ ) > 0 and S ( ξ ) - K S ξ - β S ( ξ ) for all ξ ξ 0 . It is, inter alia, shown that if furthermore $$D\in C^2((0,\infty ))$$ D C 2 ( ( 0 , ) ) is positive and suitably small in relation to S by satisfying $$\begin{aligned} \frac{\xi S(\xi )}{D(\xi )} \ge K_{SD}\xi ^\lambda \qquad \text{ for } \text{ all } \xi \ge \xi _0 \end{aligned}$$ ξ S ( ξ ) D ( ξ ) K SD ξ λ for all ξ ξ 0 with some $$K_{SD}>0$$ K SD > 0 and $$\lambda >\frac{2}{n}$$ λ > 2 n , then throughout a considerably large set of initial data, ($$\star $$ ) admits global classical solutions (uv) fulfilling $$\begin{aligned} \frac{z(t)}{C} \le \Vert u(\cdot ,t)\Vert _{L^\infty (\Omega )} \le Cz(t) \qquad \text{ for } \text{ all } t>0, \end{aligned}$$ z ( t ) C u ( · , t ) L ( Ω ) C z ( t ) for all t > 0 , with some $$C=C^{(u,v)}\ge 1$$ C = C ( u , v ) 1 , where z denotes the solution of $$\begin{aligned} \left\{ \begin{array}{l}z'(t) = z^2(t) \cdot S\big ( z(t)\big ), \qquad t>0, \\ z(0)=\xi _0, \end{array} \right. \end{aligned}$$ z ( t ) = z 2 ( t ) · S ( z ( t ) ) , t > 0 , z ( 0 ) = ξ 0 , which is seen to exist globally, and to satisfy $$z(t)\rightarrow +\infty $$ z ( t ) + as $$t\rightarrow \infty $$ t . As particular examples, exponentially and doubly exponentially decaying S are found to imply corresponding infinite-time blow-up properties in ($$\star $$ ) at logarithmic and doubly logarithmic rates, respectively.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3