Abstract
AbstractIn a ball $$\Omega =B_R(0)\subset \mathbb {R}^n$$
Ω
=
B
R
(
0
)
⊂
R
n
, $$n\ge 2$$
n
≥
2
, the chemotaxis system $$\begin{aligned} \left\{ \begin{array}{l}u_t = \nabla \cdot \big ( D(u) \nabla u \big ) - \nabla \cdot \big ( uS(u)\nabla v\big ), \\ 0 = \Delta v - \mu + u, \qquad \mu =\frac{1}{|\Omega |} \int _\Omega u, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$
u
t
=
∇
·
(
D
(
u
)
∇
u
)
-
∇
·
(
u
S
(
u
)
∇
v
)
,
0
=
Δ
v
-
μ
+
u
,
μ
=
1
|
Ω
|
∫
Ω
u
,
(
⋆
)
is considered under no-flux boundary conditions, with a focus on nonlinearities $$S\in C^2([0,\infty ))$$
S
∈
C
2
(
[
0
,
∞
)
)
which exhibit super-algebraically fast decay in the sense that with some $$K_S>0, \beta \in [0,1)$$
K
S
>
0
,
β
∈
[
0
,
1
)
and $$\xi _0>0$$
ξ
0
>
0
, $$\begin{aligned} S(\xi )>0 \quad \text{ and } \quad S'(\xi ) \le -K_S\xi ^{-\beta } S(\xi ) \qquad \text{ for } \text{ all } \xi \ge \xi _0. \end{aligned}$$
S
(
ξ
)
>
0
and
S
′
(
ξ
)
≤
-
K
S
ξ
-
β
S
(
ξ
)
for
all
ξ
≥
ξ
0
.
It is, inter alia, shown that if furthermore $$D\in C^2((0,\infty ))$$
D
∈
C
2
(
(
0
,
∞
)
)
is positive and suitably small in relation to S by satisfying $$\begin{aligned} \frac{\xi S(\xi )}{D(\xi )} \ge K_{SD}\xi ^\lambda \qquad \text{ for } \text{ all } \xi \ge \xi _0 \end{aligned}$$
ξ
S
(
ξ
)
D
(
ξ
)
≥
K
SD
ξ
λ
for
all
ξ
≥
ξ
0
with some $$K_{SD}>0$$
K
SD
>
0
and $$\lambda >\frac{2}{n}$$
λ
>
2
n
, then throughout a considerably large set of initial data, ($$\star $$
⋆
) admits global classical solutions (u, v) fulfilling $$\begin{aligned} \frac{z(t)}{C} \le \Vert u(\cdot ,t)\Vert _{L^\infty (\Omega )} \le Cz(t) \qquad \text{ for } \text{ all } t>0, \end{aligned}$$
z
(
t
)
C
≤
‖
u
(
·
,
t
)
‖
L
∞
(
Ω
)
≤
C
z
(
t
)
for
all
t
>
0
,
with some $$C=C^{(u,v)}\ge 1$$
C
=
C
(
u
,
v
)
≥
1
, where z denotes the solution of $$\begin{aligned} \left\{ \begin{array}{l}z'(t) = z^2(t) \cdot S\big ( z(t)\big ), \qquad t>0, \\ z(0)=\xi _0, \end{array} \right. \end{aligned}$$
z
′
(
t
)
=
z
2
(
t
)
·
S
(
z
(
t
)
)
,
t
>
0
,
z
(
0
)
=
ξ
0
,
which is seen to exist globally, and to satisfy $$z(t)\rightarrow +\infty $$
z
(
t
)
→
+
∞
as $$t\rightarrow \infty $$
t
→
∞
. As particular examples, exponentially and doubly exponentially decaying S are found to imply corresponding infinite-time blow-up properties in ($$\star $$
⋆
) at logarithmic and doubly logarithmic rates, respectively.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC