Morse Theory for S-balanced Configurations in the Newtonian n-body Problem

Author:

Asselle LucaORCID,Portaluri AlessandroORCID

Abstract

AbstractFor the Newtonian (gravitational) n-body problem in the Euclidean d-dimensional space, the simplest possible solutions are provided by those rigid motions (homographic solutions) in which each body moves along a Keplerian orbit and the configuration of the n-body is a (constant up to rotations and scalings) central configuration. For $$d\le 3$$ d 3 , the only possible homographic motions are those given by central configurations. For $$d \ge 4$$ d 4 instead, new possibilities arise due to the higher complexity of the orthogonal group $$\mathrm {O}(d)$$ O ( d ) , as observed by Albouy and Chenciner (Invent Math 131(1):151–184, 1998). For instance, in $$\mathbb {R}^4$$ R 4 it is possible to rotate in two mutually orthogonal planes with different angular velocities. This produces a new balance between gravitational forces and centrifugal forces providing new periodic and quasi-periodic motions. So, for $$d\ge 4$$ d 4 there is a wider class of S-balanced configurations (containing the central ones) providing simple solutions of the n-body problem, which can be characterized as well through critical point theory. In this paper, we first provide a lower bound on the number of balanced (non-central) configurations in $$\mathbb {R}^d$$ R d , for arbitrary $$d\ge 4$$ d 4 , and establish a version of the $$45^\circ $$ 45 -theorem for balanced configurations, thus answering some of the questions raised in Moeckel (Central configurations, 2014). Also, a careful study of the asymptotics of the coefficients of the Poincaré polynomial of the collision free configuration sphere will enable us to derive some rather unexpected qualitative consequences on the count of S-balanced configurations. In the last part of the paper, we focus on the case $$d=4$$ d = 4 and provide a lower bound on the number of periodic and quasi-periodic motions of the gravitational n-body problem which improves a previous celebrated result of McCord (Ergodic Theory Dyn Syst 16:1059–1070, 1996).

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Analysis

Reference11 articles.

1. Albouy, A., Chenciner, A.: Le probléme des n corps et les distances mutuelles. (French) [The n-body problem and mutual distances]. Invent. Math. 131(1), 151–184 (1998)

2. Albouy, A., Dullin, H.R.: Relative equilibria of the 3-body problem in $$\mathbb{R}^4$$. J. Geom. Mech. 12(3), 323–341 (2020)

3. Asselle, L., Fenucci, M., Portaluri, A.: Bifurcation of balanced configurations for the Newtonian $$n$$-body problem in $$\mathbb{R}^4$$ (2020), to appear in JFPTA, Viterbo Festschrift, 2022. Preprint available at arXiv:2011.09291

4. Cohen, Frederick R.: Introduction to configuration spaces and their applications. Braids, 183–261, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 19, World Sci. Publ., Hackensack (2010)

5. Fadell, E., Husseini, S.: Geometry and Topology of Configuration Spaces. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2001)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3