Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Calderón, C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in $$L^p$$. Trans. Am. Math. Soc. 318(1), 179–200 (1990)
2. Gallagher, I., Planchon, F.: On global infinite energy solutions to the Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 161(4), 307–337 (2002)
3. Gibbon, J.D., Holm, D.D.: Estimates for the LANS-$$\alpha $$, Leray-$$\alpha $$ and Bardina models in terms of a Navier–Stokes Reynolds number. Indiana Univ. Math. J. 57(6), 2761–2773 (2008)
4. Han, B., Wei, C.: Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete Contin. Dyn. Syst. Series A. 36(12), 6921–6941 (2016)
5. Kato, T.: Strong $${L}^p$$-solutions of the Navier Stokes equation in $${\mathbb{R}}^m$$, with applications to weak solutions. Math. Z. 187, 471–480 (1984)