Large N algebras and generalized entropy

Author:

Chandrasekaran Venkatesa,Penington GeoffORCID,Witten Edward

Abstract

Abstract We construct a Type II von Neumann algebra that describes the large N physics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/N corrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in the G → 0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A type I approximation of the crossed product;Journal of High Energy Physics;2024-01-23

2. Local Poincaré algebra from quantum chaos;Journal of High Energy Physics;2024-01-19

3. An intuitive construction of modular flow;Journal of High Energy Physics;2023-12-12

4. Modular Hamiltonian for de Sitter diamonds;Journal of High Energy Physics;2023-12-12

5. Generalized entropy for general subregions in quantum gravity;Journal of High Energy Physics;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3