Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review

Author:

Grawish Mohammed E.ORCID,Grawish Lamyaa M.,Grawish Hala M.,Grawish Mahmoud M.,Holiel Ahmed A.,Sultan Nessma,El-Negoly Salwa A.

Abstract

Abstract Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. Method: The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. Results: Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. Conclusion: To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials.

Funder

Mansoura University

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3