Mesenchymal Stem Cell Extracellular Vesicles from Tissue-Mimetic System Enhance Epidermal Regeneration via Formation of Migratory Cell Sheets

Author:

Hodge Jacob G.,Robinson Jennifer L.,Mellott Adam J.ORCID

Abstract

Abstract Background The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g., growth factors, exosomes, reactive oxygen species) may be driving epithelialization. Methods A novel tissue-mimetic 3D hydrogel system was utilized to enhance the retainment of a more regenerative ASC phenotype and highlight the functional secretome differences between 2D and 3D. Subsequently, the ASC-secretome was stratified by molecular weight and the presence/absence of extracellular vesicles (EVs). The ASC-secretome fractions were then evaluated to assess for the capacity to augment specific keratinocyte activities. Results Culture of ASCs within the tissue-mimetic system enhanced protein secretion ~ 50%, exclusively coming from the > 100 kDa fraction. The ASC-secretome ability to modulate epithelialization functions, including migration, proliferation, differentiation, and morphology, resided within the “> 100 kDa” fraction, with the 3D ASC-secretome providing the greatest improvement. 3D ASC EV secretion was enhanced two-fold and exhibited dose-dependent effects on epidermal regeneration. Notably, ASC-EVs induced morphological changes in keratinocytes reminiscent of native regeneration, including formation of stratified cell sheets. However, only 3D-EVs promoted collective cell sheet migration and an epithelial-to-mesenchymal-like transition in keratinocytes, whereas 2D-EVs contained an anti-migratory stimulus. Conclusion This study demonstrates how critical the culture environment is on influencing ASC-secretome regenerative capabilities. Additionally, the critical role of EVs in modulating epidermal regeneration is revealed and their translatability for future clinical therapies is discussed.

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3