Abstract
AbstractThe paper studies the initial boundary value problem related to the dynamic evolution of an elastic beam interacting with a substrate through an elastic-breakable forcing term. This discontinuous interaction is aimed to model the phenomenon of attachment-detachment of the beam occurring in adhesion phenomena. We prove existence of solutions in energy space and exhibit various counterexamples to uniqueness. Furthermore we characterize some relevant features of the solutions, ruling the main effects of the nonlinearity due to the elastic-breakable term on the dynamical evolution, by proving the linearization property according to Gérard (J Funct Anal 141(1):60–98, 1996) and an asymptotic result pertaining the long time behavior.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献