Author:
Alves Claudianor O.,Ambrosio Vincenzo,Ledesma César E. Torres
Abstract
AbstractIn this paper we deal with the existence of solutions for the following class of magnetic semilinear Schrödinger equation $$\begin{aligned} (P) \qquad \qquad \left\{ \begin{aligned}&(-i\nabla + A(x))^2u +u = |u|^{p-2}u,\;\;\text{ in }\;\;\Omega ,\\&u=0\;\;\text{ on }\;\;\partial \Omega , \end{aligned} \right. \end{aligned}$$
(
P
)
(
-
i
∇
+
A
(
x
)
)
2
u
+
u
=
|
u
|
p
-
2
u
,
in
Ω
,
u
=
0
on
∂
Ω
,
where $$N \ge 3$$
N
≥
3
, $$\Omega \subset {\mathbb {R}}^N$$
Ω
⊂
R
N
is an exterior domain, $$p\in (2, 2^*)$$
p
∈
(
2
,
2
∗
)
with $$2^*=\frac{2N}{N-2}$$
2
∗
=
2
N
N
-
2
, and $$A: {\mathbb {R}}^N\rightarrow {\mathbb {R}}^N$$
A
:
R
N
→
R
N
is a continuous vector potential verifying $$A(x) \rightarrow 0\;\;\text{ as }\;\;|x|\rightarrow \infty .$$
A
(
x
)
→
0
as
|
x
|
→
∞
.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献