Abstract
AbstractWe review work by Campana–Oguiso–Peternell (J Differ Geom 85(3):397–424, 2010) and Verbitsky (Geom Funct Anal 19(5):1481–1493, 2010) showing that a semi-positive line bundle on a hyperkähler manifold admits at least one non-trivial section. This is modest but tangible evidence towards the SYZ conjecture for hyperkähler manifolds.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Bogomolov, F.: On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky). Geom. Funct. Anal. 6(4), 612–618 (1996)
2. Boucksom, S.: Le cône kählérien d’une variété hyperkählérienne. C. R. Acad. Sci. Paris Sér. I Math. 333(10), 935–938 (2001)
3. Boucksom, S.: Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004)
4. Clemens, H., Kollár, J., Mori, S.: Higher-dimensional complex geometry. Astérisque (166) (1988, 1989)
5. Campana, F., Oguiso, K., Peternell, T.: Non-algebraic hyperkähler manifolds. J. Differ. Geom. 85(3), 397–424 (2010)