Abstract
AbstractWe demonstrate a method for finding the decoherence-free subalgebra $${\mathcal {N}}({\mathcal {T}})$$
N
(
T
)
of a Gaussian quantum Markov semigroup on the von Neumann algebra $${\mathcal {B}}(\Gamma (\mathbb {C}^d))$$
B
(
Γ
(
C
d
)
)
of all bounded operator on the Fock space $$\Gamma (\mathbb {C}^d)$$
Γ
(
C
d
)
on $$\mathbb {C}^d$$
C
d
. We show that $${\mathcal {N}}({\mathcal {T}})$$
N
(
T
)
is a type I von Neumann algebra $$L^\infty (\mathbb {R}^{d_c};\mathbb {C}){\overline{\otimes }}{\mathcal {B}}(\Gamma (\mathbb {C}^{d_f}))$$
L
∞
(
R
d
c
;
C
)
⊗
¯
B
(
Γ
(
C
d
f
)
)
determined, up to unitary equivalence, by two natural numbers $$d_c,d_f\le d$$
d
c
,
d
f
≤
d
. This result is illustrated by some applications and examples.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A note on invariant states of Gaussian quantum Markov semigroups;Infinite Dimensional Analysis, Quantum Probability and Related Topics;2024-06-18
2. On irreducibility and positivity improvement of norm continuous quantum Markov semigroups;Infinite Dimensional Analysis, Quantum Probability and Related Topics;2024-04-24
3. Boson Quadratic GKLS Generators;Quantum Mathematics II;2023
4. On irreducibility of Gaussian quantum Markov semigroups;Infinite Dimensional Analysis, Quantum Probability and Related Topics;2022-11-28