Author:
Arcoya David,Carmona José,Martínez-Aparicio Pedro J.
Abstract
AbstractIn this paper we study the existence of positive solution to the Kirchhoff elliptic problem $$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\left( 1+\gamma G'\left( \Vert \nabla u\Vert ^2_{L^2(\Omega )}\right) \right) \Delta u = \lambda f(u) &{} \text{ in } \; \Omega ,\\ u = 0 &{} \text{ on } \; \partial \Omega ,\\ \end{array}\right. } \end{aligned}$$
-
1
+
γ
G
′
‖
∇
u
‖
L
2
(
Ω
)
2
Δ
u
=
λ
f
(
u
)
in
Ω
,
u
=
0
on
∂
Ω
,
where $$\Omega $$
Ω
is an open, bounded subset of $$\mathbb {R}^N$$
R
N
($$N\ge 3$$
N
≥
3
), f is a locally Lipschitz continuous real function, $$f(0)\ge 0$$
f
(
0
)
≥
0
, $$G'\in C(\mathbb {R}^+)$$
G
′
∈
C
(
R
+
)
and $$G'\ge 0$$
G
′
≥
0
. We prove the existence of at least two solutions with $$L^\infty (\Omega )$$
L
∞
(
Ω
)
norm between two consecutive zeroes of f for large $$\lambda $$
λ
.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献