Within-species relationship of patchiness to both abundance and occupancy, as exemplified by seagrass macrobenthos

Author:

Barnes R. S. K.ORCID

Abstract

AbstractFor the first time, intraspecific relationships between the macroecological metrics patchiness (P) and both abundance (A) and occupancy (O) were investigated in a faunal assemblage. As a companion study to recent work on interspecific P, A and O patterns at the same localities, intraspecific patterns were documented within each of the more dominant invertebrates forming the seagrass macrobenthos of warm–temperate Knysna estuarine bay (South Africa) and of sub-tropical Moreton Bay (Australia). As displayed interspecifically, individual species showed strong A–O patterns (mean scaling coefficient − 0.76 and mean R2 > 0.8). All P–O relations were negative and most (67%) were statistically significant, although weaker (mean R2 0.5) than A–O ones; most P–A ones were also negative but fewer (43%) achieved significance, and were even weaker (mean R2 0.4); 33% of species showed no significant interrelations of either O or A with P. No species showed only a significant P–A relationship. Compared with interspecific P–A–O data from the same assemblages, power–law scaling exponents were equivalent, but R2 values were larger. Larviparous species comprised 70% of the total studied, but 94% of those displaying significant patchiness interrelationships; 5 of the 9 showing no P–A or P–O relationships, however, were also larviparous. At Knysna, though not in Moreton Bay, larviparous species also showed higher levels of occupancy than non-larviparous ones, whilst non-larviparous species showed higher levels of patchiness. Dominant Moreton Bay species, but not those at Knysna, exhibited homogeneously sloped P–O relationships.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3