Abstract
AbstractTrait-based approaches are commonly used to understand ecological phenomena and processes. Trait data are typically gathered by measuring local specimens, retrieving published records, or a combination of the two. Implications of methodological choices in trait-based ecological studies—including source of data, imputation technique, and species selection criteria—are poorly understood. We ask: do different approaches for dataset-building lead to meaningful differences in trait datasets? If so, do these differences influence findings of a trait-based examination of plant invasiveness, measured as abundance and spread rate? We collected on-site (Victoria, Australia) and off-site (TRY database) height and specific leaf area records for as many species as possible out of 157 exotic herbaceous plants. For each trait, we built six datasets of species-level means using records collected on-site, off-site, on-site and off-site combined, and off-site supplemented via imputation based on phylogeny and/or trait correlations. For both traits, the six datasets were weakly correlated (ρ = 0.31–0.95 for height; ρ = 0.14–0.88 for SLA), reflecting differences in species’ trait values from the various estimations. Inconsistencies in species’ trait means across datasets did not translate into large differences in trait-invasion relationships. Although we did not find that methodological choices for building trait datasets greatly affected ecological inference about local invasion processes, we nevertheless recommend: (1) using on-site records to answer local-scale ecological questions whenever possible, and (2) transparency around methodological decisions related to selection of study species and estimation of missing trait values.
Funder
Australian Wildlife Society
Australian Research Council
The Albert Shimmins Fund
Centre of Excellence for Environmental Decisions, Australian Research Council
University of Melbourne
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics