Nightly torpor use in response to weather conditions and individual state in an insectivorous bat

Author:

Fjelldal Mari AasORCID,Wright JonathanORCID,Stawski ClareORCID

Abstract

AbstractTorpor is a well-known energy conservation strategy in many mammal and bird species. It is often employed when environmental conditions are unfavourable to maximize survival probabilities. However, torpor often carries with it the physiological costs of a low body temperature and of rewarming in addition to potential missed opportunities for foraging. Therefore, we hypothesised that decision making regarding when to use torpor should reflect the most important environmental conditions for species distributions, and thus how they may be impacted by ongoing climate change. We investigated how weather conditions affect nightly torpor patterns in the nocturnal insectivorous Australian eastern long-eared bat (Nyctophilus bifax). By measuring the skin temperature of 37 free-ranging individuals, we confirmed that torpor was used more frequently during the winter and at subtropical compared to tropical locations. Using mixed-effect models we show that lower ambient temperatures were the main driver of individual torpor use, probably due to lower roost temperatures and prey availability. However, increased rain, wind and humidity, and decreasing barometric pressure, as well as brighter moonlight, also led to more time spent torpid per night. We suggest that bats evaluate multiple environmental cues to make decisions regarding torpor use versus active foraging based upon their expectations of the energetic benefits, prey availability and relative predation risk. Interactions between some of these effects and body mass (whilst controlling for forearm length) indicate that individual variation in body size and/or state-dependent effects of energy reserves also partly determined the use of nightly torpor in these bats.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

Norges Forskningsråd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3