The blowfly Chrysomya latifrons inhabits fragmented rainforests, but shows no population structure

Author:

Butterworth Nathan J.ORCID,Wallman James F.,Johnston Nikolas P.,Dawson Blake M.,Sharp-Heward Joshua,McGaughran Angela

Abstract

AbstractClimate change and deforestation are causing rainforests to become increasingly fragmented, placing them at heightened risk of biodiversity loss. Invertebrates constitute the greatest proportion of this biodiversity, yet we lack basic knowledge of their population structure and ecology. There is a compelling need to develop our understanding of the population dynamics of a wide range of rainforest invertebrates so that we can begin to understand how rainforest fragments are connected, and how they will cope with future habitat fragmentation and climate change. Blowflies are an ideal candidate for such research because they are widespread, abundant, and can be easily collected within rainforests. We genotyped 188 blowflies (Chrysomya latifrons) from 15 isolated rainforests and found high levels of gene flow, a lack of genetic structure between rainforests, and low genetic diversity – suggesting the presence of a single large genetically depauperate population. This highlights that: (1) the blowfly Ch. latifrons inhabits a ~ 1000 km stretch of Australian rainforests, where it plays an important role as a nutrient recycler; (2) strongly dispersing flies can migrate between and connect isolated rainforests, likely carrying pollen, parasites, phoronts, and pathogens along with them; and (3) widely dispersing and abundant insects can nevertheless be genetically depauperate. There is an urgent need to better understand the relationships between habitat fragmentation, genetic diversity, and adaptive potential–especially for poorly dispersing rainforest-restricted insects, as many of these may be particularly fragmented and at highest risk of local extinction.

Funder

Royal Zoological Society of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3