Abstract
AbstractIn seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population’s survival in a changing world. Indeed, resting stages may be an important way freshwater organisms can survive periods of drought or freezing, and as the frequency and extent of drought or freezing vary strongly among habitats and are predicted to change with climate change, it raises questions about how organisms cope with, and survive, environmental stress. Using Daphnia magna as a model system, we tested the ability of resting stages from different populations to cope with stress during diapause. The combination of elevated temperatures and wet conditions during diapause shows to prevent hatching altogether. In contrast, hatching is relatively higher after a dry and warm diapause, but declines with rising temperatures, while time to hatch increases. Resting stages produced by populations from summer-dry habitats perform slightly, but consistently, better at higher temperatures and dryness, supporting the local adaptation hypothesis. A higher trehalose content in resting eggs from summer-dry habitat might explain such pattern. Considering that temperatures and summer droughts are projected to increase in upcoming years, it is fundamental to know how resting stages resist stressful conditions so as to predict and protect the ecological functioning of freshwater ecosystems.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
University of Basel
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献