Top-down and bottom-up forces explain patch utilization by two deer species and forest recruitment

Author:

Ramirez J. IgnacioORCID,Poorter Lourens,Jansen Patrick A.,den Ouden Jan,Siewert Matthias,Olofsson Johan

Abstract

AbstractUngulates play an important role in temperate systems. Through their feeding behaviour, they can respond to vegetation by selecting patches or modify vegetation composition by herbivory. The degree in which they interact with vegetation can either reinforce landscape heterogeneity by creating disturbance or reduce heterogeneity in case of overbrowsing. This study evaluates how bottom-up (patch quality, structure), top-down forces (hunting, distance to village, forest edge) and deer features (feeding type, abundance) mediate patch utilization in a temperate forest and assess the implications of patch utilization and light on forest recruitment. Theory predicts that animals seek to maximize their energetic gains by food intake while minimizing the costs associated to foraging, such as the energy required for avoiding predators and exploiting resources. We focused on two deer species with contrasting feeding type: a browser (C. capreolus) and a mixed feeder (C. elaphus). We paired camera traps to vegetation sub-plots in ten forest sites in the Netherlands that widely ranged in deer abundance and landscape heterogeneity. Results showed that patch utilization is simultaneously explained by bottom-up, top-down forces and by deer abundance, as predicted by the safety-in-numbers hypothesis. Yet, forces best explaining patch utilization differed between deer species. Overall, higher patch utilization came with higher browsing, lower tree diversity and a large difference in forest composition: from a mix of broadleaves and conifers towards only conifers. We conclude that these two deer species, although living in the same area and belonging to the same guild, differentially perceive, interact with and shape their surrounding landscape.

Funder

Senescyt - Ecuador

Koninklijke Nederlandse Akademie van Wetenschappen

Umea University

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3