Does spatiotemporal nutrient variation allow more species to coexist?

Author:

Di Carvalho Josie AntonucciORCID,Wickham Stephen A.

Abstract

AbstractTemporal heterogeneity in nutrient availability is known to increase phytoplankton diversity by allowing more species to coexist under different resource niches. Spatial heterogeneity has also been positively correlated with species diversity. Here we investigated how temporal and spatial differences in nutrient addition together impact biodiversity in metacommunities varying in the degree of connectivity among the patches. We used a microcosm experimental design to test two spatiotemporal ways of supplying nutrients: synchronously (nutrients were added regionally—to all four patches at the same time) and asynchronously (nutrients were added locally—to a different patch each time), combined with two different degrees of connectivity among the patches (low or high connectivity). We used three species of algae and one species of cyanobacteria as the primary producers; and five ciliate and two rotifer species as the grazers. We expected higher diversity in metacommunities receiving an asynchronous nutrient supply, assuming stronger development of heterogeneous patches with this condition rather than with synchronous nutrient supply. This result was expected, however, to be dependent on the degree of connectivity among patches. We found significant effects of nutrient addition in both groups of organisms. Phytoplankton diversity increased until the fourth week (transiently) and zooplankton richness was persistently higher under asynchronous nutrient addition. Our results were consistent with our hypothesis that asynchronicity in nutrient supply would create a more favorable condition for species to co-occur. However, this effect was, in part, transient and was not influenced by the degree of connectivity.

Funder

Paris Lodron University of Salzburg

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3