Abstract
AbstractPlants interact with a diversity of phytophagous insects above- and belowground. By inducing plant defence, one insect herbivore species can antagonize or facilitate other herbivore species feeding on the same plant, even when they are separated in space and time. Through systemic plant-mediated interactions, leaf-chewing herbivores may affect the preference and performance of root-feeding herbivores. We studied how six different leaf-chewing herbivore species of Brassica oleracea plants affected oviposition preference and larval performance of the root-feeding specialist Delia radicum. We expected that female D. radicum flies would oviposit where larval performance was highest, in accordance with the preference–performance hypothesis. We also assessed how the different leaf-chewing herbivore species affected defence-related gene expression in leaves and primary roots of B. oleracea, both before and after infestation with the root herbivore. Our results show that leaf-chewing herbivores can negatively affect the performance of root-feeding D. radicum larvae, although the effects were relatively weak. Surprisingly, we found that adult D. radicum females show a strong preference to oviposit on plants infested with a leaf-chewing herbivore. Defence-related genes in primary roots of B. oleracea plants were affected by the leaf-chewing herbivores, but these changes were largely overridden upon local induction by D. radicum. Infestation by leaf herbivores makes plants more attractive for oviposition by D. radicum females, while decreasing larval performance. Therefore, our findings challenge the preference–performance hypothesis in situations where other herbivore species are present.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献