Species accumulation in small–large vs large–small order: more species but not all species?

Author:

Deane David C.ORCID

Abstract

AbstractAlthough groups of small habitat patches often support more species than large patches of equal total area, their biodiversity value remains controversial. An important line of evidence in this debate compares species accumulation curves, where patches are ordered from small–large and large–small (aka ‘SLOSS analysis’). However, this method counts species equally and is unable to distinguish patch size dependence in species’ occupancies. Moreover, because of the species–area relationship, richness differences typically only contribute to accumulation in small–large order, maximizing the probability of adding species in this direction. Using a null model to control for this, I tested 202 published datasets from archipelagos, habitat islands and fragments for patch size dependence in species accumulation and compared conclusions regarding relative species accumulation with SLOSS analysis. Relative to null model expectations, species accumulation was on average 2.7% higher in large–small than small–large order. The effect was strongest in archipelagos (5%), intermediate for fragments (1.5%) and smallest for habitat islands (1.1%). There was no difference in effect size among taxonomic groups, but each shared this same trend. Results suggest most meta-communities include species that either prefer, or depend upon, larger habitat patches. Relative to SLOSS analysis, null models found lower frequency of greater small-patch importance for species representation (e.g., for fragments: 69 vs 16% respectively) and increased frequency for large patches (fragments: 3 vs 25%). I suggest SLOSS analysis provides unreliable inference on species accumulation and the outcome largely depends on island species–area relationships, not the relative diversity value of small vs large patches.

Funder

Australian Research Council

La Trobe University

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3