Abstract
AbstractInternational organizations (IOs) of the United Nations (UN) system publish around 750 evaluation reports per year, offering insights on their performance across project, program, institutional, and thematic activities. So far, it was not feasible to extract quantitative performance measures from these text-based reports. Using deep learning, this article presents a novel text-based performance metric: We classify individual sentences as containing a negative, positive, or neutral assessment of the evaluated IO activity and then compute the share of positive sentences per report. Content validation yields that the measure adequately reflects the underlying concept of performance; convergent validation finds high correlation with human-provided performance scores by the World Bank; and construct validation shows that our measure has theoretically expected results. Based on this, we present a novel dataset with performance measures for 1,082 evaluated activities implemented by nine UN system IOs and discuss avenues for further research.
Funder
Zeppelin Universität gemeinnützige GmbH
Publisher
Springer Science and Business Media LLC
Subject
Economics and Econometrics,Political Science and International Relations
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献