Toward the recognition of spacecraft feature components: A new benchmark and a new model

Author:

Qiu Linwei,Tang Liang,Zhong Rui

Abstract

AbstractCountries are increasingly interested in spacecraft surveillance and recognition which play an important role in on-orbit maintenance, space docking, and other applications. Traditional detection methods, including radar, have many restrictions, such as excessive costs and energy supply problems. For many on-orbit servicing spacecraft, image recognition is a simple but relatively accurate method for obtaining sufficient position and direction information to offer services. However, to the best of our knowledge, few practical machine-learning models focusing on the recognition of spacecraft feature components have been reported. In addition, it is difficult to find substantial on-orbit images with which to train or evaluate such a model. In this study, we first created a new dataset containing numerous artificial images of on-orbit spacecraft with labeled components. Our base images were derived from 3D Max and STK software. These images include many types of satellites and satellite postures. Considering real-world illumination conditions and imperfect camera observations, we developed a degradation algorithm that enabled us to produce thousands of artificial images of spacecraft. The feature components of the spacecraft in all images were labeled manually. We discovered that direct utilization of the DeepLab V3+ model leads to poor edge recognition. Poorly defined edges provide imprecise position or direction information and degrade the performance of on-orbit services. Thus, the edge information of the target was taken as a supervisory guide, and was used to develop the proposed Edge Auxiliary Supervision DeepLab Network (EASDN). The main idea of EASDN is to provide a new edge auxiliary loss by calculating the L2 loss between the predicted edge masks and ground-truth edge masks during training. Our extensive experiments demonstrate that our network can perform well both on our benchmark and on real on-orbit spacecraft images from the Internet. Furthermore, the device usage and processing time meet the demands of engineering applications.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Aerospace Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3