Characterization of Gauss–Markov stochastic sequences for mission analysis

Author:

Giordano Carmine

Abstract

AbstractIn real scenarios, the spacecraft deviates from the intended paths owing to uncertainties in dynamics, navigation, and command actuation. Accurately quantifying these uncertainties is crucial for assessing the observability, collision risks, and mission viability. This issue is further magnified for CubeSats because they have limited control authority and thus require accurate dispersion estimates to avoid rejecting viable trajectories or selecting unviable ones. Trajectory uncertainties arise from random variables (e.g., measurement errors and drag coefficients) and processes (e.g., solar radiation pressure and low-thrust acceleration). Although random variables generally present minimal computational complexity, handling stochastic processes can be challenging because of their noisy dynamics. Nonetheless, accurately modeling these processes is essential, as they significantly influence the uncertain propagation of space trajectories, and an inadequate representation can result in either underestimation or overestimation of the stochastic characteristics associated with a given trajectory. This study addresses the gap in characterizing process uncertainties, represented as Gauss–Markov processes in mission analysis, by presenting models, evaluating derived quantities, and providing results on the impact of spacecraft trajectories. This study emphasizes the importance of accurately modeling random processes to properly characterize stochastic spacecraft paths.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3