Abstract
Abstract
Introduction
The relationship between pesticide exposure and the occurrence of many chronic diseases, including cancer, is confirmed by literature data.
Methods
In this review, through the analysis of more than 70 papers, we explore an increase in oxidative stress level caused by exposure to environmental pollutants and the protective effects of plant-origin antioxidants.
Results and discussion
One of the molecular mechanisms, by which pesticides affect living organisms is the induction of oxidative stress. However, recently many plant-based dietary ingredients with antioxidant properties have been considered as a chemopreventive substances due to their ability to remove free radicals. Such a food component must meet several conditions: eliminate free radicals, be easily absorbed and function at an appropriate physiological level. Its main function is to maintain the redox balance and minimize the cellular damage caused by ROS. Therefore, it should be active in aqueous solutions and membrane domains. These properties are characteristic for phenolic compounds and selected plant hormones. Phenolic compounds have proven antioxidant properties, while increasing number of compounds from the group of plant hormones with a very diverse chemical structure turn out to act as antioxidants, being potential food ingredients that can eliminate negative effects of pesticides.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering
Reference77 articles.
1. Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. Pesticide toxicity: a mechanistic approach. EXCLI J. 2018;17:1101–36.
2. Bolognesi C, Merlo FD. Pesticides: human health effects. In: Nriagu JO, editor. Encyclopedia of environmental health. Burlington: Elsevier; 2011. pp. 438–53.
3. Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol. 2010;204:1–132.
4. Jabłońska-Trypuć A, Wołejko E, Wydro U, Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J Environ Sci Health B. 2017;52(7):483–94.
5. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):141–7.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献