Abstract
Abstract
Purpose
In this paper the performance and effectiveness of the reverse osmosis (RO) process for the biologically pretreated leachate was investigated. The RO process was carried out separately for two different pH: 8.0 and 9.3.
Methods
A general pollution parameters as well as organic and inorganic indicators were determined in raw, biologically pretreated and RO treated leachate. The performance characteristics of the reverse osmosis system were made on the basis of permeate flux, electroconductivity removal rate, concentration factor and efficiency in removal of analyzed parameters.
Results
The use of SBR pretreatment had very good efficiency in BOD (97.3%) and ammonia nitrogen (95.4%) removal. The lowest effectivity was observed for chloride (11.6%), boron (3.9%) and TDS (1.2%). Pretreated leachate was subjected to RO system. The normalized average flux was 0.53 (42.3 L/m2·h) for pH = 8.0 and 0.68 (33.5 L/m2·h) for pH = 9.3. The lower membrane fouling at higher pH can be explained by electrostatic repulsion between the negatively charged membrane surface and organic substances. Independently of the process pH, a two-step membrane fouling was observed. The greatest differences in removal rates were observed for boron, which had a higher retention rate at higher pH, and ammonia nitrogen, whose removal rate decreased at higher pH. The obtained permeate pH after RO process was lower than the feed pH in two analyzed value of pH.
Conclusions
The higher flux value at pH = 9.3 is result of high content of organic matter in leachate, which is better rejected at higher pH because of higher electrostatic repulsion between organic matter and membrane surface. This indicates that the organic matter content should be taken into account when determining the operating parameters (pH values) of the RO system.
Funder
Ministerstwo Nauki i Szkolnictwa Wyższego
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献