A Bayesian approach to modeling topic-metadata relationships

Author:

Schulze Patrick,Wiegrebe SimonORCID,Thurner Paul W.,Heumann Christian,Aßenmacher Matthias

Abstract

AbstractThe objective of advanced topic modeling is not only to explore latent topical structures, but also to estimate relationships between the discovered topics and theoretically relevant metadata. Methods used to estimate such relationships must take into account that the topical structure is not directly observed, but instead being estimated itself in an unsupervised fashion, usually by common topic models. A frequently used procedure to achieve this is the method of composition, a Monte Carlo sampling technique performing multiple repeated linear regressions of sampled topic proportions on metadata covariates. In this paper, we propose two modifications of this approach: First, we substantially refine the existing implementation of the method of composition from the package by replacing linear regression with the more appropriate Beta regression. Second, we provide a fundamental enhancement of the entire estimation framework by substituting the current blending of frequentist and Bayesian methods with a fully Bayesian approach. This allows for a more appropriate quantification of uncertainty. We illustrate our improved methodology by investigating relationships between Twitter posts by German parliamentarians and different metadata covariates related to their electoral districts, using the structural topic model to estimate topic proportions.

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Modeling and Simulation,Statistics and Probability,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial special issue: Bridging the gap between AI and Statistics;AStA Advances in Statistical Analysis;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3