Abstract
AbstractThe extreme value theory (EVT) encompasses a set of methods that allow inferring about the risk inherent to various phenomena in the scope of economic, financial, actuarial, environmental, hydrological, climatic sciences, as well as various areas of engineering. In many situations the clustering effect of high values may have an impact on the risk of occurrence of extreme phenomena. For example, extreme temperatures that last over time and result in drought situations, the permanence of intense rains leading to floods, stock markets in successive falls and consequent catastrophic losses. The extremal index is a measure of EVT associated with the degree of clustering of extreme values. In many situations, and under certain conditions, it corresponds to the arithmetic inverse of the average size of high-value clusters. The estimation of the extremal index generally entails two sources of uncertainty: the level at which high observations are considered and the identification of clusters. There are several contributions in the literature on the estimation of the extremal index, including methodologies to overcome the aforementioned sources of uncertainty. In this work we will revisit several existing estimators, apply automatic choice methods, both for the threshold and for the clustering parameter, and compare the performance of the methods. We will end with an application to meteorological data.
Funder
Fundação para a Ciência e a Tecnologia
Universidade do Minho
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Modeling and Simulation,Statistics and Probability,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献